Data are becoming the new raw material of business
The Economist

Ranking Popular Deep Learning Libraries for Data Science

Gold  Blog
At The Data Incubator, we pride ourselves on having the most up to date data science curriculum available. Much of our curriculum is based on feedback from corporate and government partners about the technologies they are using and learning. In addition to their feedback we wanted to develop a data-driven approach for determining what we should be teaching in our data science corporate training and our free fellowship for masters and PhDs looking to enter data science careers in industry. Here are the results.

The Rankings

Below is a ranking of 23 open-source deep learning libraries that are useful for Data Science, based on Github and Stack Overflow activity, as well as Google search results. The table shows standardized scores, where a value of 1 means one standard deviation above average (average = score of 0). For example, Caffe is one standard deviation above average in Github activity, while deeplearning4j is close to average. See below for methods.

Results and Discussion

The ranking is based on equally weighing its three components: Github (stars and forks), Stack Overflow (tags and questions), and Google Results (total and quarterly growth rate). These were obtained using available APIs. Coming up with a comprehensive list of deep learning toolkits was tricky – in the end, we scraped five different lists that we thought were representative (see methods below for details). Computing standardized scores for each metric allows us to see which packages stand out in each category. The full ranking is here, while the raw data is here.
Continue reading

Tweet about this on TwitterShare on FacebookShare on LinkedInEmail this to someone
Share this with someone

MIT’s $75,000 Big Data finishing school (and its many rivals)

New courses target the need for managers and techies to talk to each other as data proliferate

For most students, a top degree in a field such as computer science or maths ought to be a passport to a career perfectly in tune with the relentless digitisation of work.

For the 30 graduates taking up a new one-year course at MIT’s Sloan School of Management in September, it will be only the prelude to a spell in a Big Data finishing school.

This first cohort of students will pay $75,000 in tuition fees for their Master of Business Analytics degree, with classes ranging from “Data mining: Finding the Data and Models that Create Value” to “Applied Probability”.

They will be calculating that the qualification will sprinkle their CVs with extra stardust, attracting elite employers that are trying to find meaning in the increasing volumes of data that businesses are generating. Continue reading

Tweet about this on TwitterShare on FacebookShare on LinkedInEmail this to someone
Share this with someone